
USING MATLAB-SIMULINK RTW TO BUILD REAL TIME
CONTROL APPLICATIONS IN USER SPACE WITH

RTAI-LXRT

G. Quaranta P. Mantegazza

Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano,
via La Masa, 34 20156 Milano, Italy

quaranta@aero.polimi.it
mantegazza@aero.polimi.it

Abstract

The paper presents a hard real time Linux environment that can be effectively used to design and
implement data acquisition and digital control systems, integrating the functionality of the MATLAB/
Simulink/ Real-Time-Workshop suite and RTAI, a freeware hard real time extension for Linux. The
development process requires only the ability to use the cited MATLAB suite, almost without any knowl-
edge of C-programming. The resulting software can be run on off the shelf standard personal computers,
without requiring overly complex and expensive hardware architectures often associated with specialized
real time systems, without any performance loss. Furthermore, by exploiting the RTAI specific LXRT
environment, a Linux kernel module allowing to build hard real time applications in user space, there
is no need to be involved in any relatively risky kernel module application development. After a brief
introduction of the basics for hard real time control in user space and of the design philosophy followed
to pursue this project, a few sample applications are presented to demonstrate the ease of use and the
performances that can be achieved within the RTAI/LXRT environment.

1 Introduction

The RTAI (Real Time Application Interface, for
Linux) project was born at the Dipartimento di In-
gegneria Aerospaziale, Politecnico di Milano (DI-
APM) as a tool to develop lowcost, effective, PC
based complex real time digital control systems [1].
Everything started from the need to have at hand
an effective environment for implementing such con-
trol systems and carry out real time data acqui-
sition and simulations, with an without hardware
in the loop, at the lowest possible cost. Nowa-
days the project has already reached a significant
level of maturity, and has been successfully used
in numerous applications [2, 3, 4]. Anyway, until
now, the development of the executable code im-
plementing a digital control system required good
C/C++ programming skills and, sometimes, also
a deep knowledge of the numerical methods in-
volved. An interesting way to overcome such a hur-
dle is offered by the MATLAB/Simulink/Real-Time-

Workshop suite [5, 6, 7], or simply RTW in the fol-
lowings. RTW is an automatic C language code gen-
erator for Simulink. Under Simulink it is possible to
create, simulate and analyze complex dynamic sys-
tems by simply connecting functional blocks, mostly
available from various preconfigured libraries, within
a friendly graphical user interface (GUI). The pri-
mary advantage of its use lies in the familiar math-
ematical notation used to express the problem at
hand. Furthermore, being Simulink a package of the
MATLAB problem solving environment, it shares
the same straightforward integration of computation,
monitoring and visualization, thus allowing an easy
display of any result of a concurrently running parent
simulation. By using this tool the user can concen-
trate on modeling and control issues, as opposed to
programming issues. It is then RTW that controls
the translation of the blocks in a series of C functions
than can be compiled and linked to obtain an exe-
cutable file. The usual learning time associated with
a new software is virtually eliminated, meaning both

a training time/cost saving and the possibility of fo-
cusing on more sophisticated issues regarding control
strategies. However the primary motivation for this
project has been its use in control systems teaching
in engineering courses, mated to control laboratory
practice as an important part of their syllabus.
The basic choice made while building this new appli-
cation has been to use what already found in the dis-
tributed RTW as it is. So it was decided to develop
a hard real time, i.e. providing a strict determinis-
tic response, user space porting under the supervi-
sion of RTAI-LXRT [2]. In such a way it has also
been possible to avoid duplicating Roberto Bucher’s
work on the same stuff for RTAI in kernel space [8].
LXRT is an easier, less risky and faster environment
for real time applications in user space, allowing a
user to develop and test his/her applications without
going into the kernel. RTW allows to generate dif-
ferent running codes, depending on the user request
to have a code for the tuning and monitoring of the
process under control, or a code that can run stan-
dalone. In the first case is necessary to have a way to
exchange informations between the controlling task
and Simulink. The solution available in RTW uses
TCP/IP sockets for local/remote communications
from Simulink to the running code, and vice versa,
both to perform on-line parameters tuning during
real-time executions and to monitor the behavior of
any signal. With LXRT available the easiest choice
has been to use the Tornado/VxWorks support dis-
tributed with MATLAB. Applying a few simple com-
patibilities wrappers to the Tornado/VxWorks RTW
interface, natively found in MATLAB, it has been
been possible to use it unchanged [7]. The resulting
code allows to exploit all the capabilities of the RTW
suite without any added burden. Thus during the
design and tuning phase, the generated control code
can be run under the supervision of Simulink both
locally, meaning with Simulink running on the same
PC that is in charge of the controlling process, or
remotely. When the developed application fits the
user’s needs, a stand alone code can be generated,
thus getting rid of all socket communications and
having available a software that can run correctly on
an embedded system.

2 Design Considerations

As already said, the main goal sought by this project
has been to improve the ability to create and test a
complex digital control system for people that are
not acquainted with programming, real time, kernel
patching and so on. The aim was a typical student

of a medium to advanced level control course, trying
to check his theoretical knowledge and learning from
experimental activities in a control laboratory. To
make it possible to concentrate on the task of exper-
imenting different control laws, getting a real feel on
how all the stuff works, is very helpful to have avail-
able a tool that hides all the complexities related to
computer software and hardware. Last, but far from
least, another requirement is the achievement of the
lowest possible cost.
The very first component needed to build this kind of
tool is a real time OS. The main problem is that usu-
ally this softwares are commercial, proprietary and
often very expensive. A great cost/performance ad-
vantage is offered by RTAI, a modification and an
enhancement of Linux that makes it capable of han-
dling time critical tasks in a predictable way. In fact,
RTAI is LGPL and is freely distributed, as much as
Linux is. Once you have a suitable OS you have to
build the programs, usually by means of C, to be ran
on the PC in charge of controlling a process. To do
so, the user needs to understand how to deal with
operating system calls, create, delete, make, moni-
tor and synchronize real time tasks activities. Usu-
ally all this process will require much more time to
the control lab student than that effectively given to
him/her.
One of the main advantages of RTW consists in its
fully configurable code generator called Target Lan-
guage Compiler (TLC), that specifies how to trans-
form a Simulink blocks model into a C code, allowing
to produce a controlling software for virtually any
OS and platform on which MATLAB can be run, as-
suming you build the correct interface files. Further-
more, the standard Graphical User Interface (GUI)
provided allows to start and stop the controlling soft-
ware, perform parameters tuning by modifying them
on the fly, and monitor the process by scope blocks,
both locally or remotely.
Here it follows the list of hardware and software re-
quired for implementing control systems using LXRT
and RTW:

• a standard host PC;

• a data acquisition board (DAQ);

• Linux operating system;

• RTAI Linux patch;

• MATLAB version 6.0 Release 12, with
Simulink.

• Real Time Workshop.

BaseRateExtern Upload

Rate_n

Rate_1Parameters change

ext_comm

Plot

Ethernet

FIGURE 1: Runtime Code Structure

To use a specific DAQ board is necessary to have an
adapted driver. Right now only a few board drivers
are distributed with the RTAI-RTW interface. Any-
way a new driver can be easily built following the ex-
amples already available in the package. In fact the
style adopted, i.e. simple inlines and defines, to be
used directly in the related MATLAB drivers, sim-
plify the work of adapting/changing it for any board
at hand.
The costlier parts of the presented list are obviously
its hardware components and RTW. The latter can
be really expensive for non academic applications,
but has the advantage of being an extension module
of a software widely used within the control systems
community, i.e. MATLAB. We are currently follow-
ing the evolution of the INRIA open source environ-
ment competing with MATLAB, called SCILAB [9],
and are ready to move to it when it will have an
easy to use automatic code generator for its Simulink
peer, so that it could be possible to make available
a truly free computer assisted control system design
(CACSD) environment.

3 LXRT: mimicking RTW-
VxWorks interface in RTAI

As already hinted the easier way devised to build an
interface between RTW and RTAI, was to reproduce
in the RTAI environment what another OS system,
Tornado/VxWorks in our case, is able to do. In this
way it has been possible to use the VxWorks sup-
port, as currently distributed natively within RTW,
without any change, with the added benefit of show-
ing how RTAI can easily do also what such an OS
does. The VxWorks interface creates the following

tasks that need to run on the real time platform:
(i) a certain number of Rate tasks that effectively
perform the control functions (one ore more depend-
ing if the model will be compiled as Singletasking or
Multitasking [7]). (ii) The Extern task that imple-
ments the server side of a socket stream connection,
used to receive data transfered from Simulink to the
real time process; it runs at a lower priority than
Rate tasks, and allows to update parameters with-
out recompiling the executable code. The param-
eter update is obviously left to a nonblocking, and
non real time, task. (iii) The Upload task to enable
data collection and display, again by using a socket
stream. Data are collected at every base time step
and then sent to the host for display when there is
time left, that means when there is spare time before
the next time step. The execution of all the tasks is
controlled by a bunch of semaphores. When a timer
interrupt occurs, the interrupt function service calls
semGive, which awakes a task blocked on a semTake
routine at the end of previous time step. The host
side that communicates with the real-time program
is Simulink running in external mode. Using its GUI
the user can send new parameters to the real time
controller and plot real time histories of the retrieved
model data.

To implement the aforementioned architecture
within the RTAI environment it is necessary to have
access to both Linux (to operate the TCP/IP com-
munications) and RTAI services symmetrically. This
capability is offered by LXRT, the module to imple-
ment RTAI hard real time tasks in user space. With
LXRT you can freely access all RTAI services, mean-
ing about 156 functions for timing, semaphores, mes-
saging and so on, executing both in soft and/or hard
real time. Hard real time LXRT in user space allows

full kernel preemption, with the only penalty of a
very slight increase in overhead, jitter and latency re-
maining very close to those measurable for the same
applications implemented in kernel space. The only
constraint left is that you cannot use Linux kernel
services directly. Anyway, thanks to the many inter-
task communication mechanisms made available by
RTAI, it is trivial to mate each hard real time process
to a Linux server that takes up all the kernel services
on behalf of its hard real time master. Interestingly
enough the same kind of policy is natively used by
RTW with VxWorks. That shows that the interac-
tion with non truly real time functionalities should
never be performed within any hard real time func-
tion, even if the underlying OS allows it, thus turning
what some people see as an RTAI/LXRT constraint
into a better and safer hard real time programming
style.

To access RTAI services from LXRT, a Linux pro-
cess needs to create a real time kernel task, called
the buddy/proxy that is in charge of the execution
of real time services, with a call to rt_task_init().
Afterward it is possible to start a timer, wait on a
semaphore, send intertask messages and so on. To
delete the buddy, a simple call to rt_task_delete()
is necessary. A group of simple interface .h files
has been written to mimic the VxWorks APIs used
in RTW for Tornado/VxWorks. The only module
that has been implemented anew has been the one
to support the managing of tasks woken up by a
timer interrupt, either external or internal. Within
RTAI such a module would not be strictly neces-
sary, as it could be easily implemented in many other
ways, e.g. trivially by using the timer module found
in the user space tasklets module, or by setting
up a simple periodic parent timing task in kernel
space that executes the required semaphore signal-
ing. However a direct implementation in a timer in-
terrupt handler is simpler, more effective and can
be easily used with any external timer made avail-
able by most DAQ boards. LXRT processes can be
run either in hard or soft real time mode; moving
from one configuration to the other involves just a
call to rt_make_hard_real_time(), or vice versa to
rt_make_soft_real_time(). However to switch be-
tween the two a user does not have to know them,
but just set a parameter in the execution command
line. To clarify the difference, it must be remarked
that hard real time tasks and interrupt can preempt
user space processes, but they cannot be preempted
neither by Linux interrupt nor by Linux processes,
while they can be preempted by real time tasks in
kernel space and hard real time processes of higher
priority.

Two additional tasks are created in the LXRT-RTW

interface: a mailbox to handle real time log messages
that are eventually emitted by the real time tasks,
and an Overrun Monitor. The latter is used to keep
track of the overruns that can eventually happen,
since the execution won’t stop when an overrun oc-
curs, a possibility left to the operator monitoring the
control system. This feature has been provided be-
cause sometimes several overrun can happen at the
beginning of the control activity under very fast tim-
ing, an occurrence that does not affect the correct
behavior of the control code in the following phases.
LXRT implementation enables any user to freely ac-
cess hard I/O. So the control system designer need
not to be a super user to develop and use these ap-
plications; however root permission is still required
to install the needed RTAI support modules. In
this way an inexperienced user can freely play with
the applications without compromising the security
of the installed software, an aspect that can be ex-
tremely important in a university lab.

4 Building a real-time con-
troller

To set up a new control device the first step is the cre-
ation of the Simulink block diagram that represent
the algorithm to be used to implement the chosen
control strategy. After some simple tests, it is possi-
ble to add the DAQ blocks and start the code gen-
eration phase. The process is straightforward; the
user needs only to choose the right template make-
file for TLC, and decide if he/she wants to use the
External Mode, meaning the mode where there is an
exchange of information between Simulink and the
code while the process is running and/or the Data
Log Mode, where the controller runs in a stand alone
mode and all the scope signals are just written to
a log file that can be subsequently loaded and visu-
alized in MATLAB. If there are different sampling
times in the Simulink model the user can generate
either a Singletasking or a Multitasking code. The
latter consists in creating a task for each sampling
time present in the model. The highest priority task
is the Base Rate, which executes the components of
the model code run at the highest sample rate. For
each additional sample rate in the system, a sepa-
rate task, with lower priority, is spawned: Rate 1,
Rate 2 ,. . ., Rate n. Those who have read some text-
books on OSes will promptly understand that RTW
adopts a Rate Monotonic Scheduling (RMS) policy
for its multitasking implementations. TLC creates
the source files and the makefile, then proceeds with
the compilation process. Before running the exe-
cutable file to start the control process, it is necessary

to load the required RTAI modules, an operation
that is performed by a simple script file. The user
can then choose between a soft or a hard real time
execution by a simple command line option. The
Overrun Monitor will show the overrun frequency,
with an assigned time step, if there is any overrun at
all. Clearly the soft mode is used only during devel-
opment to avoid crashes, e.g. due to too demanding
timings. After this testing and tuning phase the user
can move to the generation of the code in Standalone
mode, if he/she is planning to use the control device
in an embedded system.

5 A simple example

As a first example we present the simple model shown
in Figure 2 [8]. A discrete sine signal is generated and
output directly to the first channel of the D/A con-
verter. The very same signal goes trough a discrete
time integrator block, a random noise is added and
the resulting signal sent to a second channel of the
D/A converter. These two signals are then acquired
back by the A/D converter and plotted by means of
a scope block. The DAQ board used is a low cost
Intelligent Instrumentation model. Even though the
proposed scheme is fairly simple, it presents some
floating point operations per cycle, mostly related to
the random noise generator.

Sine Wave1

Scope

Random
Number

T

z−1

Discrete−Time
Integrator

Demux

daint

D/A

adint

A/D

FIGURE 2: Simulink Block Diagram

Figure 3 shows a plot of the two signals acquired,
when the sine wave and the random signal are gen-
erated with a sample rate of 1 KHz. Figure 4 in-
stead shows what happened when we changed on
the fly the frequency and the amplitude of the sine
wave: form 5 Volt at 10 Hz, to 3 Volt at 30 Hz. All
the tests have been ran on a old vintage 200 MHz
PentiumPro, while Simulink was running on a dif-
ferent PC. We have increased sampling frequency up
to 10 KHz without incurring in any significant over-
run other than a few at the very beginning. To test
also the Multitasking capabilities, another applica-
tion has been carried out by lowering the acquisition
frequency to 5 KHz, while keeping the main sampling
frequency at 10 KHz. Again no problems have been

encountered. The robustness of the system has been
proved by running it for over 3 hours continuously. It
must be noticed that both applications sent data to
be displayed remotely at the very same rate of gen-
eration, thus causing a high number of background
interrupts on the control computer, without causing
any problem to the hard real time activity.

10 10.5 11 11.5 12

−6

−4

−2

0

2

4

6

Time [s]
Si

gn
al

 [
V

]

Sine Wave
Integrated Wave

FIGURE 3: Plot of scope blocks

20 21 22 23 24 25

−6

−4

−2

0

2

4

6

Time [s]

Si
gn

al
 [

V
]

Sine wave
Integrated wave with noise

FIGURE 4: On the fly parameter tuning

To get a deeper insight on the performances, we have
tested another Simulink model made by 9 different
sine waves that are sent directly into scope blocks,
each one with a different sampling time. The test
has been carried out on an SMP Dual PentiumII
350 MHz. The program spawned 14 tasks on both
CPU running successfully with the higher sampling
rate of 2 KHz. The high number of interrupts that
the numerous data exchange required on the con-
trol machine, created an intensive overrun during the
start up phase, after which the program ran without
any significant problems.
Currently the project has been already exploited for
the generation of digital control devices for vibration
reduction, inverse pendulums, photovoltaic cells, po-
sitioning of flexible structures and so on. These re-
sults are not shown here for the sake of brevity.

6 Conclusions

A useful application to design and implement real
time digital control systems under a freeware envi-
ronment, without requiring any special programming
skill, has been described. It is a very flexible tool af-
fording solutions that can be successfully applied in
real word application, being able to sustain a control
at 10 KHz on a vintage machine as a PentiumPro,
without requiring to go into kernel space. We demon-
strated in this way that the overhead, which neces-
sarily comes from generating a code by means of an
automatic coding tool such as RTW, should not be
an obstacle as far as the performance required are of
the order of magnitude presented here.

References

[1] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Man-
tegazza, and S. Papacharalambous. RTAI: Real time
application interface. Linux Journal, April 2000.

[2] E. Bianchi and L. Dozio. Some experience in fast hard
real-time control in user space with RTAI-LXRT. In
Real Time Linux Workshop, Orlando, FL, 2000.

[3] E. Bianchi, L. Dozio, P. Mantegazza, and G. L.
Ghiringhelli. Complex control system, application of
DIAPM-RTAI at DIAPM. In Real Time Linux Work-
shop, Vienna, Austria, 1999.

[4] E. Bianchi, L. Dozio, D. Martini, and P. Mantegazza.
Applications of a hard real-time support in digital
control of complex aerospace systems. In AIDAA
Congress, Torino, Italy, 1999.

[5] MATLAB User’s Guide. The Math Works Inc.,
September 2000.

[6] Simulink User’s Guide. The Math Works Inc.,
September 2000.

[7] Real-Time Workshop User’s Guide. The Math Works
Inc., September 2000.

[8] http://A.die.supsi.ch/~bucher

[9] http://www-rocq.inria.fr/scilab

