
1

DIAPM RTAI for Linux:
WHYs, WHATs and HOWs

Real Time Linux Workshop, Vienna University of Technology, Dec. 1999

Paolo Mantegazza

Dipartimento di Ingegneria Aerospaziale
Politecnico di Milano

2

REAL TIME AT DIAPM

Digital
implementation of
complex control
systems (MIMO,
neural, fuzzy,
adaptive)

Data
acquisition

Test rigs control
and monitoring
(static, dynamic,
fatigue)

GOOD QUALITY

LOWEST COST

Realtime
simulation
with
hardware in
the loop

high performances Under the constraint:

ALWAYS DO
MUCH MORE
WITH MUCH
MORE LESSpossibly FREE

3

NOTHING BUT TIME IS FREE

WE ALL KNOW THAT TIME IS MONEY

BUT

IF YOU DO NOT SLEEP

AND DO NOT GO ON VACATIONS

TIME BECOMES A FREE

(ALMOST) UNLIMITED RESOURCE

4

Real Time Experience at DIAPM

16 bits / real mode

TERMINATE and STAY RESIDENT
(TSR) technique

PC + DOS
- humble slave to boot and for basic services;

- easy in surrendering the hardware back and forth with simple
user interfacing;

- PC fully available in real mode.
Some exposure to structured

approaches (QNX, RTKernel, UCOS)
resulted in

 PCDOS-DIAPM-RTOS

The mostly used

or

5

32 bits real/protected mode

under DOS: more difficult to find free, or almost free, software;

with Ppro 16 bits ran slower than on Pentiums
under Windows: even more costlier and possible loss of performance;

Port of DIAPM-RTOS and TSR in

FULL 32 bits real time real/protected mode

 using GNU-DOS

first
solution
devised

possibly
better

6

Search for “free”
“structured”

high performance

•RTMach and Maruti
(too complex)

• DOS+RTEMS

• RTHAL-RTAI under
Linux (recovering all what
available with DOS/16 bits)

the most viable

• Approaching Linux, around 2.0.25, for RTHAL-RTAI appeared too
complex (interaction with the hardware too scattered, too many cli/sti,…)

•After deciding to go to try

DOS+RTEMS vs DIAPM-RTOS

BUT

NMT-RTL appeared

(to be explained later)

7

NMT-RTL

• NMT-RTL patch confirmed that 2.0.xx was not mature for RTHAL-
RTAI;

• Its simple scheduler, declared as primitive by NMT-RTL developers,
was instead immediately recognized as what we needed, because it was
very close to that of DIAPM-RTOS;

• So we could easily go to “the old loved DOS way” and easily port all
what we had under DOS (DIAPM-RTOS almost unchanged, TSRs
became LINUX modules);

BUT ...

8

(on a PPro it was not possible to get 486DX280 performances!)

The culprit was immediately spotted -> ONE SHOT TIMING
(about 10 us to program the timer!!!)

The first tests were a disaster!!!

DIAPM-RTL VARIANT

THAT’S WHY

WAS IMMEDIATELY BORN

9

The RTL scheduler base remained (very close to that of
DIAPM-RTOS) but 90% of DIAPM-RTOS services were
recovered (almost completely as they were under DOS) and
added anew:

semaphores (rt_sem_init, rt_sem_signal, rt_sem_wait,
rt_sem_wait_until, rt_sem_wait_if,…)

intertasks messages (rt_send, rt_receive, rt_send_timed,
…)

intertasks messages “a la QNX” (rt_rpc, rt_return)

timing services (rt_sleep, rt_busy_sleep, time conversion
functions, …)

DIAPM-RTL VARIANT

 Maintained only the NMT-RTL kernel patch

10

Fixed the floating point support

Modified all what was related to the real time timing:

introduction of a periodic timing to enhance
efficiency in control applications, when one
can work with a basic period and integer
multiples of it

 recovered oneshot timing anew by using the
CPU TSC (Time Stamp Clock) with far
greater efficiency (only 2 I/O instructions to
8254 instead of 9 of RTL) (not usable with
earlier than Pentium machines, and
compatibles).

11

BIRTH OF DIAPM-RTAI

End of 1998 Feasibility study for adaptive secondary
mirror real time reconstructor:

SOLUTIONS
DUAL SMP 400 MHz
PC with PCI CCD
camera frame acquisition
and custom (MICROGATE)
200 Mbs high speed fiber
link to decentralized
controllers

vsCUSTOM
DSP BOARDs

a order of magnitude
difference in cost !!!

12

• control frequency 1000 Hz (max
latency/jitter 50 us);

• ≅ 100 Mflops (tight mul/add loop);

• send commands-receive states
to/from about 170 massively
decentralized active structural
controllers using 170: AD-2181
DSPs with two16 bits ADC and 16
bits DAC, each one controlling two
linear magnetic actuators at 40 KHz

• logging 5 MB/s to disk;

• under moderate front end activity.

13

Beginning of 1999 FROZEN SITUATION:

• 2.2.xx available and simple to patch the RTHAL-RTAI way;

• both DIAPM-RTL variant and NMT-RTL did not support SMP;

• no sign from NMT-RTL of a prompt stable upgrading of RTL to 2.2.xx
and SMP.

 Since the skeleton of RTHAL-RTAI was already tested and
verified, the decision was taken to GO AHEAD and verify that the
mirror control problem could be solved.

14

 Posting of a public call to the
RTL newsgroup and to
TORVALDS to join under a
common development for RTL-
2.2.xx UP-SMP real time based on
the RTHAL-RTAI concept
resulted in:

• discussion on a better organization of RT-Linux
directory tree;
• refusal of NMT-RTL to join on a common
RTHAL-RTAI;
• no answer from TORVALDS.

Middle of February
RTHAL-RTAI was reliably
proving that the mirror
control specs could be
satisfied on a dual 350 PII
and using RTL-like fifos

Beginning of March

15

Middle of March
A check at NMT-RTL delayed
development resulted in the
decision to go on also in porting
all what available under the
DIAPM-RTL variant to the
RTHAL-RTAI substrate ...

... EVEN IF THIS COULD MEAN STAYING ALONE
FOREVER, BUT WITH THE POSSIBILITY OF
TAKING WHATEVER USEFUL WOULD HAVE
COME FROM FUTURE RTL DEVELOPMENT

Beginning/Middle
 of April

• All what available under DIAPM-
RTL variant recovered both for UP
and SMP under an SMP compiled
kernel
• First version of all the stuff under
the acronym RTAI released

16

What is RTHAL?

The RTHAL performs three primary functions:

- gather all the pointers to the required internal data and functions
into a single structure, rthal, to allow an easy trapping of all the
kernel functionalities that are important for real time applications, so
that they can be dynamically switched by RTAI when hard realtime is
needed;

- makes available the substitutes of the above grabbed functions and
sets rthal pointers to point to them;

- substitutes the original function calls with calls to the rthal pointers
in all the kernel functions using them.

Linux is almost uneffected by RTHAL, except for a slight (and negigible)
loss of performance due to calling cli and sti, and flags related functions,
in place of their corresponding original Linux function calls and macros.

About 70 lines of code is all of what is changed/added in the kernel.

17

struct rt_hal {
struct desc_struct *idt_table;

 void (*disint)(void);
 void (*enint)(void);
 unsigned int (*getflags)(void);
 void (*setflags)(unsigned int flags);
 void (*mask_and_ack_8259A)(unsigned int irq);
 void (*unmask_8259A_irq)(unsigned int irq);
 void (*ack_APIC_irq)(void);
 void (*mask_IO_APIC_irq)(unsigned int irq);
 void (*unmask_IO_APIC_irq)(unsigned int irq);
 unsigned long *io_apic_irqs;
 void * irq_controller_lock;
 void *irq_desc;
 int *irq_vector;
 void *irq_2_pin;

void *ret_from_irq;
};

RTHAL Structure

18

What is RTAI?

It is a module in dormant state ready to overtake Linux

RTAI init_module does a few important things:
• initializes all of its control variables and structures;
• makes a copy of the idt_table and of the Linux irq handlers entry addresses;
• initializes the interrupts chips management specific functions.

rtai.h contains basic defines and inlined functions which performs
 RTAI services

timers services 8254 timer and APIC timers

rt_mount_rtai hardware fully trapped !!!

when one does

19

RTAI services

•implementation of a specific lock service (Linux spinlocks are no more
protected by disabling the interrupt flags as Linux hold just soft flags, while
RTAI needs true disables)

unsigned long flags, spinlock_t lock, rt_spin_lock(&lock),
rt_spin_unlock(&lock), rt_spin_lock_irq(&lock),
rt_spin_unlock_irq(&lock), flags=rt_spin_lock_irqsave(&lock),
rt_spin_lock_irqrestore(flags,&lock)
• implemention of a global lock service (to obtain atomicity across CPUs)

unsigned long flags, rt_global_cli(), rt_global_sti(),
rt_global_save_flags(), flags=rt_global_save_flags_and_cli(),
rt_global_restore_flags(flags)
• implementation of a special form of hard lock disable across CPUs

unsigned long flags, flags=hard_lock_all(), hard_unlock_all(flags)

20

RTAI mounting

• sets up the global hard lock handler;

• hard locks all CPUs;

• redirects rthal interrupts enable/disable and flags save/restore to its
internal functions doing it all in software;

• recovers from rthal a few functions to manipulate 8259 PIC and
IO_APIC mask/ack/unmask staff;

• redirect all hardware handler structures to its trapped equivalent;

• changes the handlers functions in idt_table to its dispatchers;

• releases the global hard lock.

Linux appears working as nothing happened
but it is no more the machine master

21

RTAI interrupt dispatcher

(from RTAI Internals Presentation, by Patrick Mourot, ALCATEL FRANCE)

22

TIMERS

8254

ONE CHIP
PER BOX

3 COUNTERS

LINUX RTAI

counter 0
used to pace periodically at

param.h HZ macro (usually 100
hz) (related counter: linux jiffies)

used for oneshot / periodic
mode

counter 1 not available (used for RAM refresh cycles?)

counter 2 used for beeping frequency
used to emulate TSC on 486

boxes (beeping muted …)

Linux time is kept by pending a Linux interrupt at due time

usable for UP
and SMP

23

Local APIC
ONE PER CPU
(unfortunately not
available on UP)

LINUX:

RTAI:

for profiling and scheduling (?)

uses just one or all either for
homogeneous or heterogeneous
periodic / oneshot

Linux LOCAL APIC timers kept by broadcasting to the
Linux Local APIC timer handlers at each jiffy

usable for SMP
and MUP

24

TIMERS & CONTROLLERS

Timers alone (in modules coupled to FIFOs and Shared Memory
modules) are the basic approach to implement high performances
controllers (recall the mirror starting point…), the controller being
the timer interrupt handler (or handlers with MP). For this RTAI
has available:

rt_request_timer (handler, tick, choose_apic_8254)

rt_request_apic_timers (handler, apic_timer_data)
The single APIC timer of rt_request_timer interrupt is installed on
the CPU that executes the function, while the 8254 timer interrupt
can be directed to any desired CPU with rt_assign_irq_to_cpu
(Linux uses Simmetric Delivery).

At the moment only a single handler can be assigned in rt_request_apic_timers;
adding multiple handlers is trivial.

25

RTAI MODULES

• SHARED MEMORY

• FIFOS and SEMAPHORES (with no
reat time schedulers installed)

• REAL TIME SCHEDULERS (UP,
SMP, MUP)

• POSIX API

•LXRT (inter-intra Linux-RTAI support
module)

26

SHARED MEMORY & FIFOS

Timers are just RTAI interrupt handlers. To communicate
with LINUX process, RTAI makes available:

It is a friendly user API, just malloc
and free, based on T. Motylevsky
‘mbuf-kvmem’ substrate (derived by
hacking Linux bttv.c). (RTAI shared
memory API was developed to avoid
the misteries and intrecacies that made
mbuf usable only by wizards…). RTAI
shared memory can be used inter-intra
Linux processes/modules

In RTAI they are implemented as
mailboxes, allowing only non-
blocking operations from the
module-side and blocking
operations from Linux processes.
They include semaphores that are
useful for synchronization, e.g.
coordinate shared memory
operations.

SHARED MEMORY FIFOs

27

int rtf_create_handler (unsigned int fifo, int (*handler)(unsigned int
fifo))
int rtf_create (unsigned int fifo, int size)
int rtf_reset (unsigned int fifo)
int rtf_destroy (unsigned int fifo)
int rtf_resize (unsigned int minor, int size)
int rtf_put (unsigned int fifo, void *buf, int count)
int rtf_get (unsigned int fifo, void *buf, int count)
int rtf_sem_init (unsigned int fifo, int value)
int rtf_sem_post (unsigned int fifo)
int rtf_sem_trywait (unsigned int fifo)
int rtf_sem_destroy (unsigned int fifo)
int rt_printk (const char *fmt, ...)
int rt_print_to_screen (const char *fmt, ...)

FIFOs Services

used in RTAI modules

28

int open (const char *pathname, int flags, mode_t mode)
ssize_t write (int fd, const void *buf, size_t count)
ssize_t read (int fd, void *buf, size_t count)
int select (int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout)
int poll (struct pollfd *ufds, unsigned int nfds, int timeout)
void rtf_set_async_sig (int fd, int signum)
int rtf_reset (int fd)
int rtf_resize (int fd, int size)
void rtf_suspend_timed (int fd, int ms_delay)
int rtf_open_sized (const char *dev, int perm, int size)
int rtf_read_all_at_once (int fd, void *buf, int count)
int rtf_read_timed (int fd, void *buf, int count, int ms_delay)
int rtf_write_timed (int fd, void *buf, int count, int ms_delay)
void rtf_sem_init (int fd, int value)
int rtf_sem_wait (int fd)
int rtf_sem_trywait (int fd)
int rtf_sem_timed_wait (int fd, int ms_delay)
void rtf_sem_post (int fd)
void rtf_sem_destroy (int fd)

used in LINUX processes

29

SCHEDULERS

UP

SMP

MUP

• only for uniprocessor (DIAPM-RTL
variant scheduler unchanged)
• 8254 based
• oneshot/periodic timing
• 486 compatible

• for multiprocessors
• single oneshot/periodic timing (either 8254 or LOCAL
APIC based, the first one usable also with UPs)
• tasks can run symmetrically on any or a cluster of CPUs,
or bound to a single CPU

• only for multiprocessors
• task must be bound to a single CPU
• a LOCAL APIC based timer per CPU
(heterogeneous timing possible, i.e. mixing of
different ticked periodic timers and/or oneshot)

30

Scheduler Services

all the functions to be
presented can be used with
any scheduler (reasonable
default actions taken for
natively specific function;
user can dinamically
change the defaults
afterward)

task functions

timing functions

semaphore functions

intertask
communication

functions

31

TASK FUNCTIONS

int rt_task_init(RT_TASK *task, void (*rt_thread)(int), int data,int stack_size,
int priority, int uses_fpu, void(*signal)(void))

int rt_task_init_cpuid(RT_TASK *task, void (*rt_thread)(int), int data, int stack_size,
int priority, int uses_fpu, void(*signal)(void)
unsigned int run_on_cpu)

void rt_set_runnable_on_cpus (RT_TASK *task, unsigned int cpu_mask)
void rt_set_runnable_on_cpuid (RT_TASK *task, unsigned int cpuid)
int rt_task_delete (RT_TASK *task)
int rt_task_signal_handler (RT_TASK *task, void (*handler)(void))
int rt_task_use_fpu (RT_TASK *task, int use_fpu_flag)
void rt_linux_use_fpu (int use_fpu_flag)
void rt_preempt_always (int yes_no)
void rt_preempt_always_cpuid (int yes_no, unsigned int cpuid)
void rt_task_yield (void)
int rt_task_suspend (RT_TASK *task)
int rt_task_resume (RT_TASK *task)
RT_TASK *rt_whoami (void)

32

TIMING FUNCTIONS (I)

int rt_get_timer_cpu (void);
void rt_set_periodic_mode (void);
void rt_set_oneshot_mode (void);
RTIME start_rt_timer (int period);
RTIME start_rt_timer_ns (int period)
RTIME start_rt_apic_timers (struct apic_timer_setup_data *setup_mode, unsigned

int rcvr_jiffies_cpuid);
RTIME stop_rt_timer (void);
RTIME count2nano (RTIME timercounts);
RTIME nano2count (RTIME nanosecs);
RTIME count2nano_cpuid (RTIME timercounts, unsigned int cpuid);
RTIME nano2count_cpuid (RTIME nanosecs, unsigned int cpuid);
RTIME rt_get_time (void);
RTIME rt_get_time_cpuid (unsigned int cpuid);
RTIME rt_get_time_ns (void);
RTIME rt_get_time_ns_cpuid (unsigned int cpuid);
RTIME rt_get_cpu_time_ns (void);

33

TIMING FUNCTIONS (II)

int rt_task_make_periodic_relative_ns (RT_TASK *task, RTIME start_delay,
RTIME period);

int rt_task_make_periodic (RT_TASK *task, RTIME start_time, RTIME period);
void rt_task_wait_period (void);
RTIME next_period (void);
void rt_busy_sleep (int nanosecs);
void rt_sleep (RTIME delay);
void rt_sleep_until (RTIME time);

34

SEMAPHORE FUNCTIONS

void rt_sem_init (SEM *sem, int value);
int rt_sem_delete (SEM *sem);
int rt_sem_signal (SEM *sem);
int rt_sem_wait (SEM *sem);
int rt_sem_wait_if (SEM *sem);
int rt_sem_wait_until (SEM *sem, RTIME time);
int rt_sem_wait_timed (SEM *sem, RTIME delay);

35

INTERTASK COMM. FUNCTIONS

RT_TASK *rt_send (RT_TASK *task, unsigned int msg);
RT_TASK *rt_send_if (RT_TASK *task, unsigned int msg);
RT_TASK *rt_send_until (RT_TASK *task, unsigned int msg, RTIME time);
RT_TASK *rt_send_timed (RT_TASK *task, unsigned int msg, RTIME delay);
RT_TASK *rt_receive (RT_TASK *task, unsigned int *msg);
RT_TASK *rt_receive_if (RT_TASK *task, unsigned int *msg);
RT_TASK *rt_receive_until (RT_TASK *task, unsigned int *msg, RTIME time);
RT_TASK *rt_receive_timed (RT_TASK *task, unsigned int *msg, RTIME delay);
RT_TASK *rt_rpc (RT_TASK *task, unsigned int to_do, unsigned int *result);
RT_TASK *rt_rpc_if (RT_TASK *task, unsigned int to_do, unsigned int *result);
RT_TASK *rt_rpc_until (RT_TASK *task, unsigned int to_do, unsigned int *result,

 RTIME time);
RT_TASK *rt_rpc_timed (RT_TASK *task, unsigned int to_do, unsigned int *result,

RTIME delay);
int rt_isrpc (RT_TASK *task);
RT_TASK *rt_return (RT_TASK *task, unsigned int result);

36

POSIX Services thread functions

mutex functions

condvar functions

message queue
functions

37

THREAD FUNCTIONS

int pthread_create (pthread_t *thread, pthread_attr_t *attr, void *(*start_routine)
(void *), void *arg)

void pthread_exit (void *retval)
pthread_t pthread_self (void)
int pthread_attr_init (pthread_attr_t *attr)
int pthread_attr_destroy (pthread_attr_t *attr)
int pthread_attr_setdetachstate (pthread_attr_t *attr, int detachstate)
int pthread_attr_getdetachstate (const pthread_attr_t *attr, int *detachstate)
int pthread_attr_setschedparam (pthread_attr_t *attr, const struct sched_param

*param)
int pthread_attr_getschedparam (const pthread_attr_t *attr, struct sched_param

*param)
int pthread_attr_setschedpolicy (pthread_attr_t *attr, int policy)
int pthread_attr_getschedpolicy (const pthread_attr_t *attr, int *policy)
int pthread_attr_setinheritsched (pthread_attr_t *attr, int inherit)
int pthread_attr_getinheritsched (const pthread_attr_t *attr, int *inherit)
int pthread_attr_setscope (pthread_attr_t *attr, int scope)
int pthread_attr_getscope (const pthread_attr_t *attr, int *scope)
int sched_yield (void)

38

MUTEX FUNCTIONS

int pthread_mutex_init (pthread_mutex_t *mutex, const pthread_mutexattr_t
*mutex_attr)

int pthread_mutex_destroy (pthread_mutex_t *mutex)
int pthread_mutexattr_init (pthread_mutexattr_t *attr)
int pthread_mutexattr_destroy (pthread_mutexattr_t *attr)
int pthread_mutexattr_setkind_np (pthread_mutexattr_t *attr, int kind)
int pthread_mutexattr_getkind_np (const pthread_mutexattr_t *attr, int *kind)
int pthread_setschedparam (pthread_t thread, int policy, const struct sched_param

*param)
int pthread_getschedparam (pthread_t thread, int *policy, struct sched_param

*param)
int pthread_mutex_trylock (pthread_mutex_t *mutex)
int pthread_mutex_lock (pthread_mutex_t *mutex)
int pthread_mutex_unlock (pthread_mutex_t *mutex)

39

CONDVAR FUNCTIONS

int pthread_cond_init (pthread_cond_t *cond, const pthread_condattr_t *cond_attr)
int pthread_cond_destroy (pthread_cond_t *cond)
int pthread_condattr_init (pthread_condattr_t *attr)
int pthread_condattr_destroy (pthread_condattr_t *attr)
int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex)
int pthread_cond_timedwait (pthread_cond_t *cond, pthread_mutex_t *mutex, const

struct timespec *abstime)
int pthread_cond_signal (pthread_cond_t *cond)
int pthread_cond_broadcast (pthread_cond_t *cond)

40

MESSAGE QUEUE FUNCTIONS

mqd_t mq_open (char *mq_name, int oflags, mode_t permissions, struct mq_attr
*mq_attr)

size_t mq_receive (mqd_t mq, char *msg_buffer, size_t buflen, unsigned int
*msgprio)

int mq_send (mqd_t mq, const char *msg, size_t msglen, unsigned int msgprio)
int mq_close (mqd_t mq)
int mq_getattr (mqd_t mq, struct mq_attr *attrbuf)
int mq_setattr (mqd_t mq, const struct mq_attr *new_attrs, struct mq_attr *old_attrs)
int mq_notify (mqd_t mq, const struct sigevent *notification)
int mq_unlink (mqd_t mq)

41

“DULCIS IN FUNDO”
(last but far from least)

LXRT
just take ALL the functions (>100) available for UP/SMP/MUP

+ shared memory + FIFOs and use them inter-intra RTAI
modules / LINUX processes

Side effect: better than System V IPC intra LINUX processes (with
not so bad performances…)

Within the constrained posed by the LINUX scheduler and non
preemptable kernel firm real time possible within LINUX processes
(meaning: very good average performances coupled to spikes of
unbearable latency; the picture could change once the low latency
patch for 2.2.10 becomes standard)

Useful “per se” and for an easier, less risky and faster development
phase (the primary reason of its birth)

42

DRIVERS

• SERIAL PORT

• STANDARD PARALLEL PORT

• NE2000 ETHERNET CARD

• AD/DA CARDS (Intelligent Instrumentation PCI20428W,
Bluechip Technology ADC-44, Advantech PCL-818HG/HD
and PCL727, Keithley DAS 1600)

Commitment to always make available all what distributed with
NMT-RTL (if and when required, provided RTL remains and
adds (L)GPL)

+

43

IMMEDIATE FUTURE

• an eye on 2.3.xx to be ready for 2.4.xx (at the moment 2.3.xx
seems to make RTHAL-RTAI easier)

• a lot of refiniments

• an eye on APIs

• hope for a lot of contributions

• fading hope to see the RTHAL concept native in LINUX

• porting RTHAL-RTAI to other architecture (if someone pays
while leaving it all LGPL)

44

NON DIAPM ACKNOWLEDGMENTS (I)
 (at DIAPM they know all my debts for their invaluable help already)

D. Beal
V. Brushkoff
P. Cloutier

P. Daly
D. Danlugli
R. Finazzi
S. Hughes
B. Knox

J. Kuepper
K. Kumsta

S. Papacharalambous
D. Schleef

C.Schroeter
C. Tannnert
P. Wilshire
T. Woolven

(those deserving a shuffling of the above surname sort already know the value of their help)
(my sincere apologies for anyone forgotten)

45

NON DIAPM ACKNOWLEDGMENTS (II)

M. Barabanov and V. Yodaiken

(… but DIAPM-RTAI has nothing to do with FSMLabs-RTL)

