SOME EXPERIENCES IN FAST HARD-REAL TIME
CONTROL IN USER SPACE WITH RTAI-LXRT

E. Bianchi, L. Dozio
Dip. Ing. Aerospaziale, Politecnico di Milano,
via la Masa 34, 20158 Milano, Italy
bianchi@aero.polimi.it
dozio@aero.polimi.it

Abstract

This paper demonstrates the possibility of executing wide band hard real time application in user space
under Linux. Such a possibility is demonstrated through examples of its implementation at DIAPM of
three digital active control systems, that require relatively high (up to 12 KHz) control frequencies: an
active noise control of an acoustic duct using feedforward techniques, an application of active vibration
suppression of a plate with piezoelectric materials, and an active noise reduction system used to control
combustion instabilities in a Rijke tube. A brief introduction of the basic ideas on which hard real time
control in user space is based, its most recent developments, and a complete description of the software

architecture adopted in each application are included.

1 Introduction

Since the birth of RTAI almost two years ago, all
the experimental researches on active noise, vibra-
tion and flutter control at Dipartimento di Ingegneria
Aerospaziale, Politecnico di Milano (DIAPM)) have
been implemented using it [1]-[2]. While maintain-
ing its performances, RTATI has evolved consistently,
especially in adding new features [3], such as shared
memory, newfifos, mailboxes, etc., following its main
author’s ”philosophy” that ”if the user has a feature,
probably he/she will not need it; if the user doesn’t
have a feature, surely he/she will need it”.

Many undergraduate students and PhD candidates
have been involved in these control activities for their
thesis. Furthermore in the future RTATI will be used
also for teaching a course of aerospace control sys-
tems, confirming its role of main real-time platform
at DTAPM. But generally, people who used, uses or
will use it, have no much experience in real-time sys-
tems and kernel-modules programming, so this ap-
proach to RTAT is often hard and slows down signif-
icantly the development of its control application.

The primary reason of the birth of RTAI-LXRT
was an easier, less risky and faster development of
real-time applications in user space, making avail-
able any of the RTAT schedulers functions to Linux
processes and allowing a full symmetric implemen-

tation of real time services. In such a way stu-
dents familiar with C-programming, after a brief tu-
torial on multi-tasking, timing and IPC communi-
cations, can quickly become good soft-real-time pro-
grammers, bypassing the shock of many hard ma-
chine crashes while working in kernel space.

LXRT eventually evolved to the point of making it
possible full hard real-time in user space. In this way,
users can not only develop and test their final appli-
cations in user space, but also run them without go-
ing into the kernel. It is believed that HARD-LXRT,
introducing only a few microseconds more overhead,
is acceptable for many applications, as the results
presented further on demonstrate.

2 LXRT (and mini ...)

As already suggested, LXRT is a module that al-
lows the symmetric use of all the services made avail-
able by RTAT and its schedulers in user space, both
for soft and hard real time. That implies you can
call all the RTAI functions in whatever space you
are, i.e. inter-intra kernel real time tasks and Linux
processes. Thus RTAI can become an alternative
way also for programming standard user space ap-
plications, exploiting both Linux and RTAT services.
Hence you can freely use RTAI services, 156 func-
tions, including flexible timings, semaphores, mail-

boxes, inter-task messages and remote procedure
calls, in whatever space and application you want
to work.

A definite advantage given by LXRT is that one can
start developing his/her application safely in user
space, test it in soft real time, eventually go to hard
real time through a simple call a function and, only
if required, to kernel space for top performances.

Hard real time LXRT in user space allows full kernel
preemption and the only penalty you pay is a slightly
increased overhead, jitter and latency remaining very
close to the kernel ones. All of it comes without (al-
most) touching the kernel, just 4 lines of code. For
sure it is a far easier approach than having a herd of
fancy preemption points scattered around the kernel
code.

There is however a constraint that must be satisfied
to implement hard real time in user space: you can-
not use Linux kernel services. It is not a heavy bur-
den as, thanks to the wealth of RTAT inter task com-
munication services, it is trivial to mate each hard
real time process to a Linux server that takes up all
the kernels services on behalf of its hard real time
master. Such a policy could be the right one to be
chosen also when one is working with any native hard
real time operating system available on the market.
Note that, having done it independently from the
kernel, if, and when, plain Linux will ever reach hard
LXRT performances, that will imply just that LXRT
developers will be relieved from the burden of main-
taining it. Any existing RTAI application in user
space will be untouched and RTAI will still remain a
valuable tool to make your work easier.

LXRT has been wholly developed at DIAPM by
Paolo Mantegazza (mantegazza®@aero.polimi.it).

However its hard real time support is
jointly copyrighted with Pierre Cloutier
(pcloutier@poseidoncontrols.com) and Steve

Papacharalambous (stevep@lineo.com), as they
played a substantial part in making it work his hard
real time initial draft code. It should be remarked
that Pierre Cloutier has also implemented, and is still
improving, a more robust and user friendly version
of LXRT, he called LXRT-INFORMED. It will even-
tually become a full substitute of LXRT. LXRT will
nonetheless survive as the base initial development
tool for implementing new features. Moreover in the
near future RTAI and LXRT hard real time opera-
tions will benefit also from having full traps protec-
tion. The related work is being jointly carried out by
Pierre Cloutier and Ian Soanes(ians@lineo.com).

To access RTAI services, Linux processes, us-
ing LXRT, create a real time task (i.e. the
buddy) with rt_task_init(). The buddy’s job
is to execute the real time services on behalf of

its parent process. Afterward you can start a
timer (startrt_timer()), mark the process as
periodic with rt_task.make periodic(), sleep for
a while with rt_sleep(), wait on a semaphore
(rt_semwait()), and so on. To delete the buddy,
just call rt_task delete().

To distinguish a hard real time process from a
LXRT firm real time process, the user simply
calls rt_make hard real_time(), whereas by us-
ing rt_make_soft_real _time() he/she can return to
standard Linux task switching. The soft Linux inter-
rupts are kept disabled for hard real time user space
processes. This way, hard real time tasks and in-
terrupts can preempt user space processes, but they
cannot be preempted neither by Linux interrupt nor
by Linux processes, while they can be preempted by
real time task in kernel space and hard real time pro-
cesses of high priority.

The reader is invited to have a look at the RTAI
documentation and manual, as well as to the wealth
of LXRT examples, found in the RTAI distribution,
for more detailed information and for a check of its
performances.

The new development version of RTAI (24.1.xx),
aimed at the approaching 2.4.xx kernel, contains also
the mini rtai_lxrt tasklets module, which adds an
interesting new feature along the line of a symmetric
usage of all its services inter-intra kernel and user
space, both for soft and hard real time applications.
In such a way one has an even wider spectrum of de-
velopment and implementation lanes, allowing max-
imum flexibility with uncompromized performances.

The new services provided by mini_rtai_1xrt can be
useful when you have many tasks, both in kernel and
user space, that must be executed in soft/hard real
time, but do not need any RTAT scheduler service
that could lead to a task block. Such tasks are called
tasklets and can be of two kinds: normal tasklets
and timed tasklets (timers). Tasklets should be used
whenever the standard hard real time tasks available
with RTAT and LXRT schedulers can be a waist of re-
sources and the execution of simple, possibly timed,
functions can be more than enough. Instances of
such applications are timed polling and simple Pro-
grammable Logic Controllers (PLC) like sequences of
services. Obviously there are many other instances
that can make it sufficient the use of tasklets, either
normal or timers. In general such an approach can
be a very useful complement to fully featured tasks
in controlling complex machines and systems, both
for basic and support services.

Timed tasklets executes their function either in
oneshot or periodic mode, on the base of their time
deadline and according to their, user assigned, pri-
ority. Instead plain tasklets are just functions whose

execution is simply triggered by calling a given ser-
vice function at due time, either from a kernel
task or interrupt handler requiring, or in charge
of, their execution when they are needed. Since
only non blocking RTAI schedulers services can be
used in any tasklet functions, user and kernel space
mini_rtai_lxrt applications can cooperate and syn-
chronize by using shared memory. Note that the
very name mini_rtai_lxrt remind to a kind of light
soft /hard real time server that can partially substi-
tute RTAT and LXRT in simple non blocking appli-
cations.

To initialize in kernel space a timed tasklet to be
used in user space, you have to call rt_init_timer(),
while rt_insert_timer() inserts it in the list of
timers to be processed by a timers manager task.
For a normal tasklet, the corresponding functions are
rt_init_tasklet() and rt_insert_tasklet, while
for its execution just call rt_tasklet_exec().
Timed tasklets are fired under the control of a server
kernel space task, while the agent in charge of ex-
ecuting normal tasklets finds and executes them by
means of an agreed name.

3 Software architecture

As already said, LXRT makes available all the ser-
vices and programming mechanisms of RTAI, and its
schedulers, in user space. Thank to them you are al-
lowed maximum freedom in implementing whatever
hard real time policy is most suited to solve your
problems. Without entering in many details we now
explain a few typical simple schemes that can be used
to implement a single controller with a user interface
and a Linux server.

The schemes presented here are all based on a main
program that expands into two threads of execu-
tion and then acts as a user interface. The first
thread, called fun, will run in hard real time and
executes the controller task. The second thread,
called linux server, acts as server toward Linux
and its services. Both main and the linux_server
are often soft POSIX real time tasks implementing
a SCHED_FIFO policy. Such an implementation is
by no means compulsory but is usually adopted to
achieve a better response from Linux. Both main
and linux_server usually cooperate in building up
a suitable user interface. By way of example main
can take the burden of user input, by controlling
the mouse, keyboard and network communications,
while the 1inux_server can provide data logging to
any file system and monitoring scopes.

The terms thread above is taken in a loose sense
and can mean either POSIX threads, created by
calling pthread create as in the presented exam-

ples, or standard LINUX processes created by fork-
ing and/or direct commands, or any combination
thereof. Clearly the use of true threads allows an
easy sharing of a common data space, so it is much
more similar to the use of kernel space module. Such
a solution could ease the transition to kernel space,
if that will ever be required for maximum perfor-
mances. However thank to the inter-task commu-
nication/synchronization services and shared mem-
ory available in RTAI the use of full processes makes
such a final pass as easy as that based on threads.
Any possible following porting to kernel space will
just translate in the use of communicating modules.
Once more it is important to remark that such a
scheme can be expanded endlessly to allow you the
more appropriate and easy way to implement your
control system.

Naturally all threads/processes needing to access
RTAI services must mate with a buddy RTAI
task server. After having acquired a buddy they
can run either in soft real time, relying on a
SCHED FIFQ Linux scheduling policy (by calling
sched_setscheduler()), or in hard real time, by
calling rt_make hard real time() to access the ser-
vices of the fully preemptive LXRT scheduler. Hard
real time in user space make it compulsory the use
of mlockall() to avoid paging and related memory
faults. Soft real time tasks do not strictly require
memory locking, however it is strongly recommended
to use it anyhow.

Once more the reader is strongly advised to have a
look at the example available in LXRT and LXRT-
INFORMED for a more detailed presentation of the
wealth of usage of RTAI services in user space, for
both soft and hard real time. So for sake of simplic-
ity in the following part we will present just some
solutions, more appropriate to the implementation
of the controllers used in this paper. Before going
on we note that the controller (fun) must be timed
precisely to achieve a precise sampling rate. Such a
timing can be provided either by the schedulers tim-
ing or by an external source. In our specific cases
main acted as a simple user interface standard Linux
Process, using mouse and keyboard, linux_server
acted as a soft POSIX real time monitor process,
logging data to disk for post processing and imple-
menting a simple tcl/tk based scope, fun was the
actual hard real time controller, interfacing to sen-
sor and actuators by using AD/DA ISA boards, pro-
grammed directly in user space.

3.1 Task and tasklets directly driven
by a scheduler timer

Having chosen to rely on RTAI schedulers timing,
Figs. 1 and 2 sketch two possible solutions. In Fig.
1 the use of periodic task is exemplified, while a sim-
ple timed tasklet is adopted in Fig. 2. The sketched
frame of operation should be self explaining. The
two solutions are very similar, the notable difference
being that the timer tasklet (fun) can interact with
the other components of the application only through
the common data space, as it is forbidden to use any
RTALI service that can lead to a task switch. So such
a solution can simply execute a timed function un-
der the control of the RTAI TIMERS MANAGER
TASK. The timers manager is the kernel task in
charge of calling fun, either in kernel or user space
according to its type, i.e. periodic or oneshot, and
user assigned priority. The choice between the two
solutions depend on what fun has to do. If it is
sufficient a timed tasklet function, it is the simplest
solution.

3.2 Task and tasklets directly driven
by an external timer

If an independent external timing source is available,
as it often is when a DA/DA board is being used, it
is possible to avoid using the scheduler timing and
rely on an external timer only. This was clearly pos-
sible in our case so that the solutions depicted in
Figs. 3 and 4 were also possible. Fig. 3 still uses
the RTAI schedulers. The external timer interrupt
drives timer, its kernel space handler, who resumes
the hard real time task fun. In our case the use
of a counting semaphore is preferred but a simple
suspend/resume scheme could also be suitable. It
must be noted however that the use of a counting
semaphore allows an easy check of timer overruns
thus permitting a safe halt of the control system prior
to jamming the computer. In fact RTAI rt_sem wait
returns the semaphore count and so timer overruns
are promptly detected. The timer can be controlled
both by main and fun in any preferred way. The
tasklet solution is much the same as the previous
timed tasklet execution. The notable difference is
that a timed tasklet is executed by A TIMERS MAN-
AGER while a plain tasklet can be executed from
whatever RTAT kernel space function, i.e. tasks and
interrupt handlers, the latter being our case.

3.3 Some specific comments

As summarized in paragraph 4 for the tests at hand
no noticeable difference in performance was evi-
denced, the emphasis being mainly placed on the

possibility of executing in user space high rate hard
real time controllers, carrying out a relatively large
amount of floating point calculations, with reason-
able user interfaces. The fact that such a possibility
allows also an easy development needs not to be com-
mented any more. However it should be noted that
in the present case the exemplified applications were
already available in kernel space. So the implementa-
tion path went opposite to the usual implementation,
i.e. soft user space, hard user space, kernel space (if
needed). Nonetheless the possibility of developing
first in soft real time was fully appreciated and, when
every thing proved fine, rt_make hard real_time
was simply uncommented thus easily getting into
hard real time performances.

4 How we tested

All the experimental activities, described in the next
paragraphs, were carried out on a Uni-Processor In-
tel Pentium III 700 MHz, using a Das1600 board
for analog inputs and a PCL727 board for analog
outputs. While testing our hard real time applica-
tions in User Space a sustained high processing load
was always generated by simultaneously running the
following commands:

1- ping -f somewherel

2 - ping -f somewhere2

3 - while "true"; do

1s -aR /; sync; done

4 - while "true"; do

cp /usr/src/linux-2.2.16.tgz tmp;
sync; rm tmp; sync; done
5-top -d 0.05

6 - while "true"; do

cat /proc/interrupts;
cat /proc/rtai/*; done

Such a load caused top to constantly show a 100%
CPU usage and allowed to verify that hard real time
in user space was not affected by any glitches related
to any foreground load.

Since all hard real time tasks were running period-
ically, there scheduling jitter/latency was continu-
ously monitored by:

- toggling a bit on the parallel port at each task pe-
riod, and displaying the related square wave on a
persistent trace of a digital scope;

- internally computing the actual period by using the
CPU Time Stamp Clock (TSC).

The thickened scope trace allowed to directly mea-
sure the related ”true” jitters. All the scope and
internal measurements were always within 1-2 us at

RTAI KERNEL SPACE SERVICES
(rtai, rtai_sched, Ixrt, rtai_shm, rtai_fifos, rt_com_Ixrt,
rt_net_lIxrt, rt_par_Ixrt, rt_net, rt_com, rt_parport)

USER SPACE

MAIN

rtai _mall oc()
rt_task_init()
start_rt_timer()
pthread_create(..,fun,..)

pthread_create(.,|inux_serv,. BUDDY
whil e {
}

rt_task_delete()
stop_rt_timer()
rtai _free()

LINUX SERVER
sched_set schedul er (
rt_task_init()
m ockal | () BUDDY

FUN

sched_set schedul er ()
rt_task_init()
m ockal | ()

rt_make_hard_real _tine()
rt_task_make_peri odic()
whi | e {

BUDDY

rt_task_wait_period()

rt_make_soft_real _tine()
rt_task_del ete()
munl ockal | ()

RTAI KERNEL SPACE SERVICES
(rtai, rtai_sched, Ixrt, rtai_shm, rtai_fifos, rt_com_Ixrt,
rt_net_lIxrt, rt_par_Ixrt, rt_net, rt_com, rt_parport)

DATA n ockal | ()

.
! |
i I
i I
1 I
1 I
i I
! |

I
! USER SPACE !
i I
! MAIN !
! sched_set schedul er () 1
! rt_task_init() '
I m ockal I () !
| start_rt_timer() !
| rt_init_tiner() |
i rt_insert_timer(..,fun,.,prior) BUDDY |
i pthread_create(.,|inux_serv,.) |
! whi | e { |
i S I
D } !
v s rt_renove_tiner() i
'/ TIMERS rt_delete_tiner() i
[MANAGER stop_rt_timer() !
[TASK ' rt_task_del ete() !
L | munl ockal | () ‘
¢\ (exeesfun '
o aprior) [/ !
! . K LINUX SERVER BUDDY i
! Se_ -7 sched_set schedul er () '
! COMMON rt_task_init() !
i I
| I
| I
| I
i I
i I
1 I
1 I
1 I
i I
| I
| I
| I
i I
i I
i I
1 I
1 I
i I

Figure 2: Typical use of a hard timed tasklet (timer) in user space

RTAI KERNEL SPACE SERVICES
(rtai, rtai_sched, Ixrt, rtai_shm, rtai_fifos, rt_com_Ixrt,
rt_net_Ixrt, rt_par_Ixrt, rt_net, rt_com, rt_parport)

USER SPACE

MAIN

rtai _mall oc()
rt_task_init()
pthread_create(..,fun,..)
pthread_create(.,linux_serv,.) BUDDY
whil e {

rt_task_delete()
rtai _free()

LINUX SERVER

sched_set schedul er ()
rt_task_init()
ml ockal | ()

FUN
sched_set schedul er ()

rt_task_init()

ni ockal | ()
rt_make_hard_real _time()
whil e {

TIMER rt_semwait()

rt_semsignal ()| }

rt_make_soft_real _time()
rt_task_del ete()

munl ockal | ()

RTAI KERNEL SPACE SERVICES
(rtai, rtai_sched, Ixrt, rtai_shm, rtai_fifos, rt_com_Ixrt,
rt_net_Ixrt, rt_par_lxrt, rt_net, rt_com, rt_parport)

USER SPACE

MAIN

rtai _malloc()
sched_set schedul er ()
rt_task_init()

ni ockal | () BUDDY
pthread_create(.,linux_serv,.)
TIMER rt_init_tasklet()
rt_find_tasklet_by_id(tname) rt_insert_tasklet(tnane,fun,.)
- - - whil e
rt_taskl et _exec() {
}

rt_renove_taskl et ()
rt_del ete_tasklet()
rt_task_delete()

munl ockal | ()
rtai _free()

LINUX SERVER
sched_set schedul er (
rt_task_init()

m ockal I ()

MEMORY /' /common

Figure 4: Typical use of a hard interrupt tasklet (timer) in user space

worst. The maximum jitter measured during all the
tests was 15 us.

All tests were run using each of the schemes de-
scribed above. The specific task periods will be
given, for each test case, in the following part of the

paper.

In the following paragraphs a brief description of the
experimental applications made at DIAPM, using
the LXRT module is reported . For more details
about the related activities see the references.

5 Vibration control of a panel

This section describes the active vibration sup-
pression experiment of a flat aluminum panel
(600x400mm), using a Multi Input Multi Output
(MIMO) sub-optimal control system and three cou-
ples of piezoelectric sensors and actuators applied on
both the two sides of the panel [4].

5.1 Suboptimal control

The design of the co-located control system is ob-
tained from a model which correlates experimental
data and numerical simulations. These are based on
an integrated structural-piezoelectric-electric finite
element model describing the dynamic behaviour of
the structure and of the embedded piezoelectric de-
vices. It can also take into account signal condi-
tioning circuits, power amplifiers and any other elec-
tronic device used to implement the control system.
The sub-optimal regulator has been designed by us-
ing an existing, in-house developed, software, mainly
aimed at aeroservoelastic systems, e.g. the design of
active control for aeroelastic systems. Such a pro-
gram allows to design robust sub-optimal regulators
that match various performance and stability crite-
ria. It is based on a multi-model, multi-objective
approach that minimizes quadratic cost functions,
in time and frequency domains [5]. Therefore, the
designer can obtain a particular time response per-
formance of the closed-loop system and at the same
time can achieve a very accurate frequency-domain
loop-shaping.

The most important advantage of the sub-optimal
approach is that it allows to assign an arbitrary
structure to the regulator, ranging from a simple
direct feedback of the measurements to a dynamic
compensator. In this application, a direct feedback
scheme has been adopted, and an optimization of
only the time domain cost function has been per-
formed, to obtain a square positive semi-definite
feedback matrix. For further details see [4].

5.2 Results

Table I shows control results in presence of single
harmonic excitation conditions at several frequen-
cies and in presence of a multi-tone excitation sig-
nal. The reduction ratios of the signals of the sen-
sors are reported. It is apparent that the first two
modes are considerably attenuated by the controller,
whereas the third mode is nearly unaffected, because
it is only partially controllable by the current ex-
periment setup of the locations of sensing/actuating
piezos (Fig.5). Such results are obtained using a sam-
pling frequency of 12 KHz.

[CONTROL SOFTWARE]

ANTI-ALIASING POWER
FILTERS AMPLIFIERS
ED/A boar d] EA/D boar d]
Figure 5: Experimental setup
attenuation [dB]
frequency | acc. Vpl Vp2 Vp3
89 hz -15.15 | -15.56 | -14.26 | -15.8
142 hz -13.64 | -3.5 9.3 |-12.31
227 hz -9.54 -5.7 -7.36 | -2.07
multifreq | -7.45 | -6.66 -5.7 -5.8

Table I: Attenuation factors with suboptimal
control
6 Noise reduction in a duct

The active control of sound [6] involves the introduc-
tion of a number of control sources, called secondary

in literature, driven in such a way that the field gen-
erated by them interferes destructively with the field
caused by the noise sources, called primary.

In this application an Active Noise Control (ANC)
system has been developed to reduce the sound field
inside a plexiglas duct, 2 m long (Fig. 6). The pri-
mary source is constituted by a loudspeaker mounted
at one end of the pipe and driven by a signal gener-
ator with a pure sine signal, whose frequency varies
over the range 100-400 Hz. The secondary source is
another loudspeaker, perpendicular to the duct and
placed at the middle of the tube length.

Figure 6: Experimental setup

6.1 FXLMS feedforward

control

adaptive

The ANC system implemented here is a so called
FXLMS feedforward adaptive control. In this con-
figuration (Fig. 7), the reference signal coming from
a microphone placed close to the noise source is pro-
cessed by a digital adaptive Finite Impulse Response
(FIR) filter to generate the control signal that is ap-
plied to the secondary source. Another microphone,
placed where its desired to ” create silence”, measures
the residual noise and is used to adjust the coef-
ficients of the adaptive filter, by means of a Least
Means Square (LMS) algorithm.

Primary Source of noise

Error Microphone ‘Of

Filter K

‘O Reference Microphone

Actuator
Signal .
Filter
Generator

Amplifier

<

Control
System

Figure 7: Control architecture

The fact that the electrical reference and the error
signals are obtained from the acoustic pressure using
a microphone and the cancelling sound is produced
by the electrical output signal using a loudspeaker
introduce a delay in the system. To compensate for
this ”secondary-path” transfer function (indicated
with S(z)in the scheme reported in Fig. 8), a possible
solution is to estimate it (i.e. the transfer function
between the control loudspeaker and the error mi-
crophone) with an off-line identification technique,
using a FIR filter and to place such an estimate af-
ter the reference signal. In such a way a so called
filtered-X LMS (FXLMS) algorithm is realized. For
more details see [6].

REFERENCE SIGNAL DISTURBANCE SIGNAL

PRIMARY PATH
P2)

CONTROL ERROR

SIGNAL | SECONDARY PATH SIGNAL
S(2)

ADAPTIVE CONTROL
w(2)
SECONDARY PATH L
ESTIMATE LMs
SN2 J

Figure 8: Feedforward scheme

6.2 Results

Table II shows the attenuation factors in decibel ob-
tained with the FXLMS feeforward control system.
The great attenuation is due either to the feeforward
scheme which uses the information of the disturbance
signal to enhance closed-loop performances and to
the simplicity of the plant. The sampling frequency
for this experiment is 9 KHz, because of the heavy
computational load of the algorithm.

frequency [Hz] | attenuation [dB]
100 35.7
150 36.6
200 37.8
250 38.2
300 38.5
350 40.1
400 39.9

Table II: Attenuation factors with feedforward
control

7 Active control of combustion
instabilities

Thermo-acoustic instability is a well-know phe-
nomenon that can occur when a flame, or any other
heat source, is located inside a chamber. The control
of this phenomenon is an important task in a com-
bustion systems, because of the deleterious effects in
term of performance, environmental pollution due to
the bad combustion process and the risk of structural
damages that such instabilities could produce.

The benchmark problem of thermo-acoustic instabil-
ities is the Rijke Tube [7]. It is simply a long vertical
tube containing a compact heat source that produces
acoustic emission, provided that the heat source is
located in the lower half of the tube.

7.1 Rijke Tube’s experiment

In this application an active acoustic feedback con-
trol has been developed to reduce the noise emis-
sions of a Rijke Tube. The primary noise source
produces an acoustic fluctuation of the pressure in-
side the tube, measured by a pressure transducer.
The signal coming from this sensor is processed by
a digital controller and then connected to a loud-
speaker perpendicular to the tube at the primary
source length. This scheme (Fig. 9) provides a sec-
ondary noise source inside the tube that, by con-
trolling the flow, interferes destructively with the
acoustic fluctuation of pressure generated by the heat
source (closely working with the same mechanism of
the duct’s experiment). In this case the regulator is
a simple inverter amplifier, which in theory should
have an infinite gain in order to minimize the closed-
loop transfer function amplitude. The inversion of
the signal is accomplished to obtain a phase of 180°.
An important role in this architecture is also cov-
ered by the electro-acoustic transfer function (from
the secondary source to the sensor) that, basically,
represent a time delay (or a phase shift) between the
primary and the secondary source. To achieve good
reduction ratio of the noise emission, the regulator
should consider this effect, i.e. by using a digital
phase shifter. However in this test it has been veri-
fied that the phase margin was big enough to com-
pensate the delay.

7.2 Results

The efficiency of the controller can be appreciated
looking at Fig. 10, displaying the pressure at the
point where the control sensor is located. The con-
trol begins operating after 5 seconds and for 20 sec-
onds. The sampling frequency is 5 KHz.

low passfilter (470Hz) |

high pass filter
AID
FEEDBACK
ACTIVE
NOISE
=" @ CONTROL

POWER
AMPLIFIER

D/A

Figure 9: Experimental setup

s0

Coritrol ON

2s

1s

10
l i }
Control OFF

&H.‘ l ' H N ﬂ! I ! W NConerIOFF
o

) s 10 20 25 30

pread i)

1s
tempo [secl

Figure 10: Experimental results

8 Concluding remarks

Born for tutorial research and teaching at DIAPM,
LXRT has evolved up to being a complete tool for im-
plementing, from the initial development to the final
production phase, real and complex hard real time
applications in user space, practically without any

performances loss respect to its kernel space coun-
terpart.

The full symmetric approach allows any previous
RTAT user to have the same kernel module function
calls and so to be familiar with its usage, and new
users to quickly learn how to build a soft/hard real
time RTAI-based user space application, eventually
converting it to a Linux kernel module. The per-
formances of hard-LXRT, as reported in the three
controllers presented here, demonstrates that it is
suitable not only as a development but also as a pro-
duction tool.

9 Acknowledgements

This research has been supported by grant
RAAZS202/0/00 from the Italian Electric Power
Company. Thanks to Prof. Ghiringhelli for his help
and technical support, and to Davide Martini for his
precious cooperation.

References

[1] E. Bianchi, L. Dozio, P. Mantegazza, G.L. Ghir-
inghelli, Complex Control System, Applications

[3]

[4]

of DIAPM-RTAI at DIAPM, Real Time Linux
Workshop, 1999 Vienna - Austria.

E. Bianchi, L. Dozio, D. Martini, P. Mantegazza,
Applications of a hard real-time support in digi-
tal control of complex aerospace system, AIDAA
Congress, 1999 Turin - Italy.

D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Man-
tegazza, S. Papacharalambous, RTAI: Real Time
Application Interface, Linux Journal, April 2000.

E. Bianchi, G.L. Ghiringhelli, D. Martini, P.
Masarati, Neural Active Control for Vibrations
and Noise Suppression, I.C.A.S.T., 1999 Boston
- USA.

G. Attanasio and P. Mantegazza, Design of Low
Order Flutter Suppression System, CEAS Int. Fo-
rum on Aeroelasticity and Structural Dynamics,
1997, Rome - Italy.

S.M. Kuo, D.R. Morgan, Active Noise Control
Systems, Wiley Interscience, 1996.

M.A. Heckl, Active Control of the Noise from
a Rijke Tube, Journal of Sound and Vibration,
1988.

